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Abstract—A new method for the preparation of optically active five-membered cyclic carbonates bearing an unsaturated
substituent via an enzymatic reaction is described. In the examination of the regiospecific recognition of PPL, dl-(E)-4-(1-octenyl)-
1,3-dioxolan-2-one is hydrolyzed with higher enantioselectivity. The reaction is also applicable to the racemic (E)-4-[2-(alkoxycar-
bony)ethenyl]-1,3-dioxolane-2-one, a useful �,�-unsaturated ester in organic syntheses. Introducing the isopropyl group to the
ester moiety affords the highest enantioselectivity although the ester group is located at a remote position from the asymmetric
carbon. © 2002 Elsevier Science Ltd. All rights reserved.

Optically active 1,2-diols are important intermediates in
the synthesis of natural products, and thus many syn-
thetic procedures for such compounds have been devel-
oped. Although the asymmetric dihydroxylation of
olefins using cinchona alkaloid derived ligands (AD-
mix-� and -�) is one of the most popular procedures for
the synthesis of chiral 1,2-diols,1 the method does not
always satisfactory work in terms of the enantioselectiv-
ity in some cases.

The enzymatic hydrolysis of five-membered cyclic car-
bonates is one of the attractive methods for the prepa-
ration of optically active 1,2-diols.2–4 We have also
accomplished the enzyme-mediated enantioselective
hydrolysis of various cyclic carbonates.5,6 Pseudomonas
diminuta, a bacterium, hydrolyzes C2-symmetrical sub-
strates with a dimethyl group, and the reaction of
4,5-dimethyl-1,3-dioxolane-2-one affords the corre-
sponding optically active 2,3-butanediol.5 On the other
hand, porcine pancreas lipase (PPL, EC 3.1.1.3, Type II
from Sigma) catalyzes the enantioselective hydrolysis of
monosubstituted cyclic carbonates, and then various
kinds of optically active unreacted (R)-cyclic carbon-
ates and resulting (S)-diols are easily obtained.6 We
have already examined the reaction of substrates bear-
ing simple n-alkyl groups with or without a benzyloxy

group at the terminus. When the reaction could also be
applied to the substrates bearing a 1-alkenyl or alkynyl
group, more useful optically active compounds, espe-
cially as chiral synthons of glyceraldehyde derivatives,
would be prepared (Scheme 1). In this paper, we tried
to apply the PPL-mediated hydrolysis to the synthesis
of the optically active 1,2-diols bearing unsaturated
substituents.

We first examined the reactions of three kinds of sub-
strates which have different stereo structures, racemic
(E)- and (Z)-4-(1-octenyl)-1,3-dioxolan-2-one (dl-1a
and 1b) and 4-(1-octynyl)-1,3-dioxolan-2-one (dl-2)
(Scheme 2, Table 1).7 In all cases, the reactions were
performed using 10 mM of the substrates in 0.1 M
phosphate buffer (pH 6.5) containing 10% i-Pr2O at
10°C.6 Unfortunately, the hydrolysis of the (Z)-form
substrate (dl-1b) for 24 h slowly proceeded (conv.8=
0.17) with low enantioselectivity (E value8=3), while
the E value and conversion were 23 and 0.46, respec-
tively, in the case of the substrate bearing a saturated
octyl group under the same reaction conditions.6b On
the other hand, the substrate with an octynyl group
(dl-2) was smoothly hydrolyzed with moderate enan-

Scheme 1.
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Scheme 2.

Table 1. Enantioselective hydrolysis of the cyclic carbonates of 1 and 2 with PPLa

Substrate Time (h) Carbonate Diol Conv.b Ec

Yield (%) Ee (%) Yield (%) Ee (%)

59 44 331a 81d24 0.36 15
27 �99e 461a 5896 0.63 18
79 9f 1724 46g1b 0.17 3

2 24 29 96h 58 43i 0.69 9

a Incubation was performed using 10 mM of dl-1 or 2 with PPL in 0.1 M phosphate buffer (pH 6.5) at 10°C containing 10% i-Pr2O as the
co-solvent.

b Calculated by ee(carbonate)/[ee(carbonate)+ee(diol)].
c Calculated by ln[(1−conv.)(1−ee(carbonate))/ln[(1−conv.)(1+ee(carbonate))].
d [� ]D

24=+9.1 (c 1.15, MeOH).
e [� ]D

24=+20.8 (c 0.81, CHCl3).
f [� ]D

26=+6.1 (c 0.99, CHCl3).
g [� ]D

26=+3.3 (c 0.72, MeOH).
h [� ]D

26=+3.5 (c 1.34, CHCl3).
i [� ]D

24=+5.3 (c 0.81, MeOH).

tioselectivity (conv.=0.69, E value=9) to afford (R)-4
with 96% ee. Interestingly, the (E)-alkenyl substituent
for dl-1a apparently increased the E value although the
reaction rate was slower than that of dl-2. When the
reaction was performed for 96 h using dl-1a (E value=
18),9–13 the optical purities of (R)-1a (27% yield) and
(S)-(E)-3-decen-1,2-diol (3a, 46% yield) were greater
than 99 and 58% ee, respectively. These results suggest
that the (E)-alkenyl structure is more suitable for the
active site of PPL while the other substrates do not
favorably fit. This is a unique example for showing the
regio specific recognition of the enzyme.

We then planned the preparation of the optically active
(E)-5,6-dihydroxy-2-pentenoate derivatives 5, which
belong to the �,�-unsaturated esters bearing a chiral
center at the �-position (Scheme 3). These compounds
are of special interest as useful Michael acceptors for

conjugate additions14 and important chiral building
blocks for natural product syntheses.15 We examined
the PPL-catalyzed reactions of cyclic carbonates dl-5
bearing a different ester group, and these results are
summarized in Table 2. In the case of methyl ester,
(E)-4-[2-(methoxycarbony)ethenyl]-1,3-dioxolane-2-one
(dl-5a), the hydrolysis smoothly proceeded with enan-
tioselectivity, but the yields of the diol 6a was lower
than the theoretical one. For the reaction of dl-5a for
24 h, the resulting (S)-6a (46% ee) was recovered in
only 13% yield although (R)-5a (96% ee) was obtained
in 40% isolated yield and the conversion and E value
were calculated to be 0.62 and 15, respectively. The
reaction of the ethyl ester dl-5b gave similar results.
Although the details are not yet clear, the enzymatic
hydrolysis of the ester part could also occur under the
reaction conditions to give the corresponding dihydrox-
ylcarboxylic acids, which were difficult to extract from

Scheme 3.
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Table 2. Enantioselective hydrolysis of cyclic carbonate dl-5 with PPLa

Carbonate DiolSubstrate Conv.Time (h) E

Yield (%) Ee (%) Yield (%) Ee (%)

40 96c 135ab 46d24 0.68 10
30 97e 2424 59f5b 0.62 15

245c 74 10g 15 59h 0.14 4
65di 61 55 28 88j 0.38 32

51 85 3612 845di 0.50 33
42 �99k 39 77 0.56 415di 24

a Incubation was performed using 10 mM of dl-5 with PPL in 0.1 M phosphate buffer (pH 6.5) at 10°C containing 10% i-Pr2O as the co-solvent
unless otherwise noted.

b Incubation in 0.1 M phosphate buffer (pH 6.5) containing 7.5% i-Pr2O and 2.5% DMSO as the co-solvent.
c [� ]D

22=−19.7 (c 1.18, CHCl3).
d [� ]D

24=−24.3 (c 1.07, MeOH).
e [� ]D

22=−16.6 (c 1.13, CHCl3).
f [� ]D

22=−19.1 (c 1.07, MeOH).
g [� ]D

22=−0.8 (c 0.54, CHCl3).
h [� ]D

22=−13.8 (c 0.65, MeOH).
i Incubation in 0.1 M phosphate buffer (pH 6.5) containing 6.25% i-Pr2O and 3.75% DMSO as the co-solvent.
j [� ]D

22=−32.4 (c 1.02, MeOH).
k [� ]D

22=−14.8 (c 0.91, CHCl3).

the water layer and the yields of the diols 6 would
finally decrease.

In order to prepare both 5 and 6 with high yield and ee,
we focused on the suppression of the hydrolysis process
mentioned above by changing the ester group. The
elongation of the ester moiety to a tetradecyl group
(dl-5c) caused a drastic decrease in both the reactivity
and enantioselectivity (conv.=0.14, E values=4; reac-
tion time, 24 h). As expected, an isopropyl group,
which is a more sterically hindered chain (dl-5d),
improved the yield of the corresponding diol (isopropyl
(E)-5,6-dihydroxy-2-pentenoate, 6d), which was iso-
lated without a significant decrease in the yield.16–19

Surprisingly, the isopropyl ester also affected the enan-
tioselectivity, and the E value was apparently twice
those of the other substrates although the hydrolysis of
the ester part could not be ignored. The reaction of
dl-5d for 24 h proceeded to afford the optically pure
(R)-5d and (S)-6d (77% ee) in 42 and 39% yields,
respectively (conv.=0.56, E value=41).

In conclusion, we have established a facile enzymatic
procedure to prepare optically active diol derivatives
bearing an unsaturated substituent. The resulting com-
pounds are important synthons of chiral glyceraldehyde
derivatives. Amongst the PPL-catalyzed hydrolyses of
cyclic carbonates reported,2b,6 the highest enantioselec-
tivity was observed in the reaction of dl-5d. It is note-
worthy that introducing the bulky ester group provides
such a high enantioselectivity although the ester group
is located at a remote position from the asymmetric
carbon. Further investigations for application of the
enzymatic hydrolysis are now in progress.
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